Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 233: 119795, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871380

RESUMO

To unravel the low membrane fouling tendency and underlying membrane fouling mechanism of liquid-liquid hollow fiber membrane contactor (LL-HFMC) capturing ammonia from human urine, the ammonia flux decline trend, membrane fouling propensity, foulant-membrane thermodynamic interaction energy and microscale force analysis at different feed urine pH were comprehensively investigated. The 21-d continuous experiments showed that the ammonia flux decline trend and membrane fouling propensity significantly strengthened with the decrease of feed urine pH. The calculated foulant-membrane thermodynamic interaction energy decreased with the decreasing feed urine pH and agreed with the ammonia flux decline trend and membrane fouling propensity. The microscale force analysis showed that the absence of hydrodynamic water permeate drag force resulted in the foulant located at long distance from the membrane were difficult to approach the membrane surface, thus considerably alleviating membrane fouling. Additionally, the vital thermodynamic attractive force near the membrane surface increased with the decrease of feed urine pH, which made the membrane fouling further relieved at high pH condition. Therefore, the absence of water permeate drag force and operating at high pH condition minimized the membrane fouling during the LL-HFMC ammonia capture process. The obtained results provide a new insight into the low membrane tendency mechanism of LL-HFMC.


Assuntos
Amônia , Purificação da Água , Humanos , Membranas Artificiais , Termodinâmica , Água , Purificação da Água/métodos
2.
Chemosphere ; 320: 138038, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736839

RESUMO

As a new type of pollutants, nanoplastics (NPs), which are easily ingested by humans from food wraps, salt, drinking water, have been widely detected in various water environments, and are a threat to human health. It is therefore urgent to develop an efficient method to remove NPs from the diet or relief its harm. In the present study, the possibility of a well-known human probiotic, lactic acid bacteria (LAB), was evaluated to remove NPs from food as an absorbent. The results indicated that LAB from infant feces could efficiently absorb three types NPs, i.e. polypropylene (PP), polyethylene (PE), and polyvinyl chloride (PVC) with the adsorption rates of PP > PE > PVC (PP 78.57%, PE 71.59%, PVC 66.57%) and the Nile red-stained NPs being aggregated on the surfaces of Lactobacillus cells. The smaller the particle size, the stronger the ability of NP adsorption on the cell surface. The hydrophobicity of NPs and bacterial cells affected the adsorption process. The measurement of adsorption rates of different cell components indicated that the overall adsorption effect of cell was better than that of individual cell component. The results of molecular dynamics analysis revealed that adsorption was mainly caused by electrostatic interactions, van der Waals forces, and hydrogen bonds. The hydrophobic interaction was also involved in adsorption process. Overall, this research may provide new information for developing new strategies for NPs removal in intestinal environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/química , Lactobacillus , Adsorção , Polipropilenos/química , Polietileno/química , Poluentes Químicos da Água/análise , Plásticos/química
3.
Sci Rep ; 12(1): 2822, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181713

RESUMO

Five severe floods occurred in the Yangtze River Basin, China, between July and August 2020, and the Three Gorges Reservoir (TGR) located in the middle Yangtze River experienced the highest inflow since construction. The world's largest cascade-reservoir group, which counts for 22 cascade reservoirs in the upper Yangtze River, cooperated in real time to control floods. The cooperation prevented evacuation of 600,000 people and extensive inundations of farmlands and aquacultural areas. In addition, no water spillage occurred during the flood control period, resulting in a world-record annual output of the TGR hydropower station. This work describes decision making challenges in the cooperation of super large reservoir groups based on a case-study, controlling the 4th and 5th floods (from Aug-14 to Aug-22), the efforts of technicians, multi-departments, and the state, and reflects on these. To realize the full potential of reservoir operation for the Yangtze River Basin and other basins with large reservoir groups globally, we suggest: (i) improve flood forecast accuracy with a long leading time; (ii) strengthen and further develop ongoing research on reservoir group cooperation; and (iii) improve and implement institutional mechanisms for coordinated operation of large reservoir groups.

4.
Water Res ; 207: 117811, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763277

RESUMO

Hollow fiber membrane contactor (HFMC) is a promising technology for removing or recovering wastewaters' volatile components. Developing a rational design method is very important for guiding its further application. In this study, we proposed a method to design the multi-stage open-loop hollow fiber membrane contactor (HFMC) employing shell-side influent. In addition, a three-stage HFMC was designed to capture ammonia from real hydrolyzed human urine. A continuous 1344 h performance was conducted. The results showed that the experimental effluent total ammonium nitrogen (TAN) concentration and ammonia mass transfer coefficient matched the predicted results well, which indicated that the design method was feasible and accurate. The three-stage HFMC showed excellent ammonia capture capacity with a TAN recovery efficiency of 93.29%, and the final effluent TAN concentration was 30.98±14.70 mg/L which met our design requirement (lower than 50 mg/L). More than 98.92% of the inorganic ions and 96.85% of the organic matter were retained in the effluent. The stripping solution after ammonia capture was the high-purity ammonium sulfate solution with low concentration of small molecular weight hydrophilic organic substances. The inorganic and organic membrane fouling was mild and randomly distributed. The inorganic membrane fouling was attributed to the deposition of calcium-, magnesium-, phosphate-related inorganic compounds, while the organic membrane fouling was mainly protein and carbohydrate. After the ammonia capture process, the surface hydrophobicity and pore properties of the membranes had no significant changes. These results demonstrated that the multi-stage open-loop HFMC could be a potential alternative for ammonia recovery from the high concentration of ammonium nitrogen wastewater.


Assuntos
Amônia , Águas Residuárias , Sulfato de Amônio , Humanos , Membranas Artificiais , Nitrogênio
5.
Sci Total Environ ; 768: 144478, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33444863

RESUMO

In this study, we developed a submerged hollow fiber membrane contactor (HFMC) to recover ammonia from human urine to get compound N-P fertilizers. The ammonia capture performance, water vapor transmembrane performance, ion rejection performance and the liquid fertilizer components using 1-4 mol/L H3PO4 as the stripping solution was comprehensively investigated. Increasing H3PO4 concentration did not significantly affect the ammonia capture performance but the water vapor transfer and fertilizer components. The ammonia mass transfer coefficients were in a range of 1.95×10-6±4.77×10-8 to 2.28×10-6±6.71×10-8 m/s and the ammonia flux fluctuated between 17.80 and 20.80 g/m2·h. The water vapor flux increased with the increase of stripping solution concentration and the time elapsed. The N content (21.29-55.24 g/L) was in the range of the commercial products while the P2O5 content (99.41-281 g/L) was slightly higher, which can be used in the soils or plants with a high demand for phosphorus. The liquid fertilizers were all mixtures of (NH4)2HPO4 and NH4H2PO4, but the distribution ratio slightly changed with the different initial H3PO4 concentration. The economic assessment showed that harvesting liquid N-P fertilizer from human urine using HFMC can make a profit of $7.089/L.


Assuntos
Amônia , Fertilizantes , Humanos , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...